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ABSTRACT

In recent years, geostatistics and stochastic modeling have made a tremendous

impact on scientific investigation. This chapter describes the relationship between

these two ideas, provides a historical perspective on their development, and dis-

cusses the ways in which they have evolved, both separately and in concert with

each other. Important issues impacting future development are also addressed.

INTRODUCTION

In recent years, geostatistics and stochastic mod-

eling have found their way into several scientific

endeavors where they have been used in significant

ways to address a diverse array of problems that are

important to the well-being of mankind. Interest in

these particular problem-solving approaches has ex-

panded from rather modest beginnings to the point

that individuals across almost all disciplines recog-

nize their value and actively incorporate them into

research and applications. This has become increas-

ingly more evident as the importance of space and

geography have become recognized in science and

industry, and as scientists have come to embrace the

ideas of spatial analysis and spatial statistics.

The increased interest in geostatistics and stochas-

tic modeling has also roughly tracked a series of

conferences on these topics that have been con-

ducted over the last 30 yr. In 1975, for example, there

was a North Atlantic Treaty Organization Advanced

Study Institute entitled Advanced Geostatistics in the

Mining Industry (although it included applications

in petroleum and hydrology as well). A 1993 con-

ference entitled Geostatistics for the Next Century

provided a look at how geostatistics might impact

the succeeding decades. Finally, the quadrennial In-

ternational Geostatistics Congress was established

nearly 30 yr ago, with the most recent installment

(2004) being conducted in Banff, Alberta, Canada.

Over the years, many have reflected on the future

of geostatistics and stochastic modeling, with at least

one entire conference being dedicated to the subject

(Dimitrakopoulos, 1994). At the 1996 International

GeostatisticsCongress held inWollongong,NewSouth

Wales, Australia, Srivastava (1997) posed a timely

question, asking, ‘‘Where are we going?’’ Although

the question might not have been completely an-

swered, it certainly inspired considerable debate; and

since that time, there seems to have been a greater

effort to give the discipline more overall focus. Clear-

ly, not all the problems have been solved, nor all the

issues addressed. The objective of the present dis-

cussion is to underscore some of the situations, both

technical and philosophical, that, from the author’s

perspective, represent ongoing distractions in the
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field. Obviously, this will not be the last time some-

one reflects on the state of geostatistics and stochastic

modeling; but perhaps this exchange will help to

stimulate still more lively conversation, more open

communication, andpossibly even resolution of some

of the ongoing difficulties.

It is necessary to make a few general comments

at the outset of this dialog to set the stage for what is

to follow. First, the distinction between stochastic

methods (which for nowwill encompass both geosta-

tistics and other stochastic modeling approaches) and

deterministic methods is, today, somewhat blurred.

In fact, the distinction is somewhat more of a per-

ception or convenience instead of a reality. In their

book entitled An Introduction to Stochastic Model-

ing, Karlin and Taylor (1998)AQ1 stated the following:

A quantitative description of a natural

phenomenon is called a mathematical

model of that phenomenon . . . A deter-

ministic model predicts a single outcome

for a given set of circumstances. A sto-

chastic model predicts a set of possible

outcomes weighted by their likelihoods

or probabilities. . . However, phenomena

are not in and of themselves inherently

stochastic. Rather, tomodel the phenome-

non as stochastic or deterministic is the

choice of the observer.

Although the title of the book is An Introduction

to Stochastic Modeling, it is, in fact, really about sto-

chastic processes, which is a different topic with a

different focus than is implied in the present context.

Stochastic modeling, then, might be understood as

somewhat more general than geostatistics, although

both emphasize stochastic phenomena. However, in

stochastic modeling, more emphasis is placed on

modeling, whereas in geostatistics, more emphasis is

placed on data analysis.

Second, most developments in geostatistics and

stochastic modeling have been, and likely always

will be, strongly driven by applications. Note that

Holden et al. (2003) interpreted stochastic modeling

as simply pertaining to the modeling of a petroleum

reservoir. In fact, it is probably fair to say that not

many really new ideas in this field have been pro-

mulgated through fundamental theoretical research,

in the same sense that new ideas in mathematics and

traditional statistics are developed from first princi-

ples. The applications-driven nature of geostatistics

and stochastic modeling is broadly evident by the

number and diversity of examples appearing in an

ever-widening literature (see the bibliography at the

end of this chapter). AQ2As a result, some of the issues

that have arisen over the years really stem from the

proliferation of methodologies beyond the conven-

tional boundaries of earth science in which geosta-

tistics and stochastic modeling have evolved. Such

issues are both theoretical and practical in nature and

sometimes simply reflect the kind of conflict that

emerges at the interface of history, language, termi-

nology, and culture. Therefore, to understand some

of the difficulties currently plaguing the discipline of

geostatistics and stochastic modeling, the best place

to start may be in the past.

A BIT OF HISTORY

Geostatistics is a relatively new discipline, and

much of its development has occurred over the last

30–40 yr. Through its flagship journal, Mathematical

Geology, the International Association for Mathe-

matical Geology (IAMG) has largely been respon-

sible for disseminating many of the theoretical ad-

vances in geostatistics, with other organizations,

corporations, and academic institutions making many

important contributions in both theory and appli-

cations. The IAMG dates from 1968, and almost

from its inception, the association recognized the

significance of this emerging discipline. However,

even well before that time, there were many exam-

ples of probability and statistics being applied to

earth science investigations. For example, the crucial

work of Gandin (1963), Matheron (1965), and AQ3Matérn

(1987) all predate the establishment of the IAMG.

Perhaps because of language differences (Swedish

in the case of Matérn and Russian in the case of

Gandin) as well as Matheron’s affiliation with Ecole

des Mines in Paris, his work and those of his students

became better known.

In retrospect, Michel David’s move from Fontai-

nebleau to the University of Montreal in 1968 (see

Dimitrakopoulos andDagbert, 2001) andAndre Jour-

nel’s move from Fontainebleau to Stanford Univer-

sity in 1978 were watershed events that greatly in-

creased the interest in geostatistics, particularly in

the United States and Canada. Together, David (1977)

and Journel profoundly influenced the theoretical

and methodological development of geostatistics

for several decades and fundamentally altered the
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way scientists view the physicalworld. The impact of

these two scholars on spatial thinking and the prac-

tice and mechanics of stochastic modeling is well

known, and their names are commonly associated

with the expansion of geostatistics from the earth

sciences into other disciplines, including medicine,

public health, business, and the environment.

Despite the extensive influence of these and other

individuals, there was not a large number of people

using geostatistical methods in the 1970s and into

the 1980s. The knowledge base and number of prac-

titioners have grown tremendously since then, but

the community of geostatisticians and stochastic

modelers remains comparatively small even today.

In fact, formal academic training programs in these

disciplines are still not widely available, with only

a handful of universities in the United States offer-

ing such programs.

One particular problem has to do with an ongo-

ing conflict between the practitioners of geostatistics

and traditional statistical methods. Geostatistics is

viewed in some circles as a reinvention and repack-

aging of statistical principles that were already well

known; however, the most devoted of geostatisticians

contend that traditional statistical methods are to-

tally ineffectual at incorporating spatial variability.

One thing seems true: the emergence of geostatistics

has forced practitioners of traditional statistical meth-

ods to embrace the importance of spatial variation. In

fact, interest in spatial statistics has exploded in the

statistical community in the last decade. In turn, geo-

statisticians have come to embrace more of the tra-

ditional ideas of statistics. The two camps have cer-

tainly not yet become one; but there does seem to be a

greater level of cooperation and mutual appreciation

than in years gone by. Such a convergence of ideas

can only be good for quantitative problem solving

in general because it diminishes the distrust and

misunderstanding of the techniques harbored by

those who are peripheral to the conflict and who

are in need of real solutions to their problems.

GEOSTATISTICS VS.
STOCHASTIC MODELING

As noted above, stochastic modeling is perhaps

more general than geostatistics, but other differ-

ences exist. Stochastic differential equations are mod-

els, Markov chains are models, there are models

for time series, and fractals are commonly used

for models. In contrast, kriging in its various forms

is not really modeling. Although kriging is closely

linked to modeling of the variogram or covariance

function, the kriging process itself is not quite the

same as modeling in the traditional sense.

Although the term geostatistics has became syn-

onymous with the stochastic approach to spatial

estimation, there are those who contend that this

view is far too narrow. Given the breadth of work

in spatial statistics and spatial estimation in recent

years (see Anselin, 1988; Davis, 2002), this complaint

could certainly be afforded some credence.

Stochastic modeling, to the extent that it is dis-

tinct from geostatistics, has, perhaps, had stronger

mathematical ties. The link to mathematics is readily

apparent in its many applications (e.g., turbulence

problems; see Batchelor, 1953; AQ4Lumley, 1970; and the

work of Kolmogorov as summarized by Hunt et al.,

1991; Frisch and Kolmogorov, 1995). The principal

upshot of stochastic modeling research has been

to replace deterministic differential equations with

stochastic differential equations, which are especially

important when considering transport problems in

the subsurface.

Although the breadth of applications for geosta-

tistics has been steadily increasing, stochastic mod-

eling is probably better known in disciplines such

as hydrology and petroleum engineering. The prin-

ciples of stochastic modeling are also known be-

yond the realm of earth and environmental science,

with applications in fields such as mathematical

finance and actuarial science (Actuarial Foundation,

2003). Geostatistics, however, finds most of its ap-

plications in the exploration and characterization of

natural resources, with a particular historical link to

the mining industry.

A natural question that might be asked, then, is

whether sufficient cross-fertilization is occurring

among disciplines; that is, whether the ideas and

results generated in one discipline or area of ap-

plication are being sufficiently used in other areas.

Although it would be hard to give a definitive an-

swer, simply asking the question raises the level of

interest and consideration. Unquestionably, more

interdisciplinary interaction is needed throughout

all the sciences, along with more integration of sci-

ence and business; and so, acknowledging the need

for increased cooperation and communication could

only serve to enhance the understanding of geo-

statistical and stochastic modeling approaches and

their applications in scientific investigations.
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COMPUTING AND
SOFTWARE CONSIDERATIONS

To a considerable extent, it is possible to link and

trace the development of geostatistics and stochastic

modeling, as well as growth in their applications,

to the advent of inexpensive and accessible comput-

ing (e.g., interactive multiuser systems such Digital

Equipment’s VAXAQ5 machines and the personal com-

puter). Ready access to computational resources has

given rise to several individualized and customized

computer programs, because individuals and groups

have tended to develop their own software over the

years. This is in strong contrast to the way in which

software to perform more traditional statistical com-

putations has arisen. Many of today’s geostatistical

algorithms were developed during the same time

frame that computing capabilities were expanding,

and so the algorithms had to be refined in concert

with computational enhancements. Traditional sta-

tistical methods and algorithms, however, are some-

what older, and some of them predate the modern

computer.

Because many of the procedures and routines to

perform traditional statistical computations were al-

ready on the shelf, it was fairly straightforwardwhen

the computer came along to operationalize and com-

pile them into integrated packages that could be fur-

ther developed and commercially distributed. Conse-

quently, as computing organizations began to flourish

in businesses and universities, statistical software

packages such as the Statistical Analysis System and

the Statistical Package for the Social Sciences, al-

though in their infancy, were already available for

distribution; and so, as demand increased, it was

natural for these packages to be routinely acquired.

In most cases, the purchase and acquisition decision,

along with the provision of subsequent maintenance

and support, was assigned to central computing or-

ganizations, and the code was commonly accessible

only on mainframe machines. At the same time, be-

cause many organizations were obtaining and using

the same software, there was a strong move toward

standardization (of the algorithms) and widespread

testing of the code, thereby increasing their appeal.

As a direct consequence, a strong market for statis-

tical software evolved that persists even today, with

continued enhancement of the procedures and codes

being almost totally commercially driven.

As suggested above, the manner in which soft-

ware evolved to perform traditional statistical com-

putations is quite different from the evolution of

geostatistical programs and software for stochastic

modeling. Although there is, indeed, some commer-

cially available geostatistical software, such as the

venerable Bluepack and its successor Isatis, as well

as geostatistical add-ons for comprehensive statis-

tical packages like S-Plus and geographic informa-

tion systems such as ArcView developed by the

Environmental Systems Research Institute, commer-

cialization has not been the primary driver, and the

market for these products is considerably smaller.

For petroleum and mining companies, cost has been

less of an impediment; but for many practitioners,

there is a strong reliance on free software such as the

aging GeoEas, GSLIB, and more recently, Gstat and

GeoR, both of which have been ported to the free-

ware platform R. Although there are obvious ad-

vantages to this approach, there are also distinct

disadvantages. For example, there is little in the sys-

tems, or by way of geostatistical practice, to ensure

that the same data processed by two different soft-

ware packages will produce the same results. Fur-

ther, the options and features of the different imple-

mentations are not likely to be the same. In general,

the algorithms are moderately well understood, but

there may be extensive differences in their imple-

mentation. The advent of Fortran-based GSLIB

perhaps set some standards; but GSLIB has not been

systematically updated as a package. Now, many

algorithms are not included, and the use of the For-

tran code in batch operations is becoming outdated.

This situation is complicated, of course, by the

wide variety of people, groups, and disciplines that

use geostatistics and stochastic modeling. Few are

exposed to the broad range of journals that now

publish papers whose results are based on geosta-

tistical analysis or stochastic modeling. In addition,

companies and businesses are reluctant to divulge

proprietary codes and systems because they want to

maintain their competitive advantages.

Such circumstances suggest the need for increased

standardization. One possible solution would be

to establish a formal mechanism by which similar

codes or packages could be operationally and nu-

merically compared, with the results of such com-

parisons being widely disseminated. This is a com-

mon practice with regard to commercially available

statistical (traditional) analysis packages (see the

regular reviews that appear in publications such

as The American Statistician). Without diminishing

the uniqueness of individual codes, the objective
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might be to establish some common performance

benchmarks that could be recognized and accepted

throughout the geostatistical community.

SIMULATION

Simulation is a term that evokes different mean-

ings for individuals working in different disciplines.

It may be deterministic in character (e.g., numeri-

cal solution of a differential equation), or it may be

probabilistic (e.g., Monte Carlo methods). Simula-

tion is used for a variety of problems and applica-

tions, particularly when it is difficult or costly to

obtain live data. For example, the U.S. Geological

Survey has developed several routines to simulate

fluid flow in the subsurface that have been widely

adopted. In geostatistics and stochastic modeling,

simulation commonly refers to the process of gen-

erating multiple realizations of a random function

to obtain an acceptable numerical solution to a prob-

lem. One or more of these realizations may serve

as the input for other computer programs (e.g.,

MODFLOW,AQ6 the modular, three-dimensional [3-D],

finite-difference ground-water–flow model devel-

oped by the U.S. Geological Survey uses simulated

cell values for hydraulic conductivity to generate

alternative flow patterns).

By its very nature, simulation cannot produce an

answer that is absolutely correct. Although the pro-

cess may yield a very good approximation that is

altogether admissible, uncertainty is always associ-

ated with the result. This uncertainty arises in sev-

eral ways. Obviously, assumptions that are improp-

erly imposed, or imperfections in the estimates of

one or more process parameters, can lead to ques-

tionable results; but there is also uncertainty in

knowing which of the many results (or realizations)

to choose from among all those that can be pro-

duced through simulation. In addition, there can be

many different ways to simulate the same process

or phenomenon, and so the choice of an approach,

or algorithm, can also contribute to uncertainty about

the result.

Several different algorithms are associated with

the geostatistical or stochastic approach to simula-

tion, including the turning-bands algorithm (which

is really a procedure to generate 3-D realizations

from multiple one-dimensional [1-D] realizations),

covariance matrix decomposition (variously called

Cholesky decomposition, LUAQ7 decomposition, etc.),

sequential Gaussian simulation (and multiple vari-

ants thereof), and simulated annealing (which is re-

ally based on an optimization approach of the same

name). Some of these implicitly rely on assump-

tions pertaining to the multivariate Gaussian dis-

tribution, and all of them essentially require use of

a known covariance function (i.e., only second-order

properties of the random function are reproduced).

Each has been developed because of perceivedweak-

nesses or difficulties with competing or alternative

approaches; but unfortunately, in many cases, it is

not immediately clear how to choose among them.

Little effort has been devoted to theoretical com-

parisons, and empirical examinations are generally

complicated by the several restrictions previously

suggested.

First, it is commonly the case in practice that

only a small number of realizations can be gener-

ated (because of cost, time, or other constraints),

with each realization encompassing only a finite (al-

though perhaps large) number of locations. In this

situation, it would be essentially impossible to con-

duct any meaningful numerical comparisons among

the results of several competing algorithms. Sec-

ond, little work has been done on the problem of

selecting the best realization from among all those

that can be produced through simulation. Because

process parameters are commonly assumed to be

characterized by statistical distributions (e.g., Gauss-

ian), any number of different realizations can be

randomly produced, and identification of one or

more that appear to be optimum is largely a sub-

jective process. Finally, on an even more funda-

mental level, the initial choice of the algorithm(s)

itself is important if the simulation results (i.e., the

realizations) are to be used for further analysis or

for decision making because those results are likely

to change if a different algorithm is selected. Note

that, with the exception of simulated annealing, the

various algorithms only reproduce the distribu-

tional characteristics of the quantity of interest in

an average sense (i.e., averaged across realizations),

and so, direct comparisons of individual realiza-

tions produced by different algorithms using es-

sentially the same inputs would not be completely

valid anyway.

An additional aspect of simulation that has re-

ceived inadequate attention is random-number gen-

eration. All geostatistical-simulation algorithms rely

on random-number generators when producing

various results, and yet there is a tendency in the
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literature to ignore the possible effects arising from

inappropriate or inadequate procedures (see Van

Neil and Laffan, 2001)AQ8 . This situation begs for more

theoretical and empirical investigation, but virtually

no work has been done on it within the geostatistical

community. A solid research effort to examine and

substantiate the quality of random-number genera-

tion algorithms could yield great dividends and

broaden the collective understanding of simulation

in the geostatistical context.

THE NOTION OF SUPPORT

One of the crucial distinctions between spatial

statistics (which could be interpreted as including

both geostatistics and stochastic modeling) andwhat

might be called classical or traditional statistics is

the explicit recognition of the importance of the sup-

port of the data. Support has to do with the idea that

the value of some quantity of interest is related to

the physical size (and possibly the dimensions) of the

unit on which it is recorded. For example, in the

context of ore reservation estimation, it is commonly

the case that assay values are associated with the

volume and shape of a core, and average grades are

associated with the size and shape of mining blocks.

A fundamental understanding of this notion has de-

veloped over the years in various disciplines. For

example, in geography, it is widely known as the

‘‘modifiable areal unit’’ problem; and in a classic

paper, Smith (1938) recognizes its implications for

agriculture. For a discussion of Smith’s results in the

context of geostatistics, see Zhang et al. (1990). Al-

thoughmuch of the investigation of support predates

the more recent expansion of geostatistical method-

ology, the ideas of block kriging and regularized

variograms are, in fact, tools for incorporating the

idea of support into geostatistical analyses.

The theory pertaining to these tools is fairly well

known, yet practical problems of application remain

to be solved. For example, computing point-to-block

and block-to-block covariances is commonly accom-

plished through numerical integration, which is im-

bedded in software. However, the software options

often do not accommodate the irregularly shaped

regions that are commonly found in practice, and so,

the notion of support is incompletely or inaccurately

addressed. Furthermore, whereas a regularized vario-

gram or covariance can be theoretically related to a

point support model, it is difficult in practice to ob-

tain such a model from nonpoint support data. Such

difficulties arise, for example, in the contexts of up-

scaling and downscaling geological, petrophysical,

or engineering properties. Still other complications

may occur in practice when determining the actual

support of the data (e.g., when hydraulic conductivity

is measured using a pumping test), resulting in re-

stricted application of the currently known theory.

BAYES, ENTROPY, AND
MULTIPOINT CORRELATION

As suggested above, an even more diverse array

of ideas from traditional statistics have made their

way into geostatistical thinking and research in re-

cent years. Three such ideas, in particular, have cap-

tured the interest and imagination of practitioners.

The first has to do with multipoint correlation.

Both the variogram and the covariance function are

two-point functions (i.e., each quantifies the similari-

ty or dissimilarity of the values at a pair of locations

in space). Each is a second-moment function. Geo-

statistics and, to some extent, stochasticmodeling are

strongly based on the assumption that knowledge

of second-order moments is sufficient. The kriging

equations depend only on the variogram or covari-

ance (with appropriate assumptions about themean)

and not on other properties or characteristics of the

random function. However, it is also known that

second-ordermoments are far from adequate in char-

acterizing even a second-order stationary random

function. The variogram is somewhat analogous to

a derivative in the sense that both filter out con-

stants because both are based on first-order differ-

ences. In contrast, higher order generalized functions

are based on higher order differences. First-order

differences are essentially dimension-free, whereas

higher order differences are not. As seen in Delfiner

(1976), to generate sample-generalized covariances,

it is necessary to construct higher order differences.

To obtain acceptable multiple first-order differences,

one may rigidly translate any pair of points. The

coefficients in the difference (+1,�1) remain un-

changed; but the same is not true for a second-order

difference. In 1-D space, one can take the trio of

points (s � h,s,s + h) with coefficients (1,�2,1), re-

spectively. Moreover, if the pattern of points is rig-

idly translated, then the coefficientswill likely change.

Hence, what might seem to be an obvious extension

to two-dimensional space does not work.
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Although a multiple-point correlation function is

not quite the same as a generalized covariance, some

analogies are present. Under a second-order station-

arity assumption, Cov(Z(s + h),Z(s)) is a function of

h alone. Even without this assumption, the geo-

metrical pattern determined by the pair of points

is the same (a line segment; although its orienta-

tion might change) and is not dependent on the

magnitude of h. In contrast, the assumption that

Cov(Z(s), Z(s + h1), Z(s + h1),. . ., Z(s + hK)) is only

a function of (h1,. . ., hK) is much stronger. More-

over, the geometrical pattern of the points (s, s +

h1,. . ., s + hK) can change greatly as the relative

magnitudes and the orientations of the (h1,. . ., hK)

change. Clearly, Cov(Z(s), Z(s + h1), Z(s + h1),. . .,

Z(s + hK)) captures more information than Cov(Z(s +

h), Z(s)).

Various authors (e.g., Guardano and Srivastava,

1993; Krishman and Journel, 2003) have proposed

some form of multipoint correlation function that

would characterize the random function to a greater

degree. This idea does not seem to have progressed

very far, and practical difficulties still exist. In par-

ticular, estimating and modeling such functions

would likely require large data sets. There is also the

question of how to actually apply such functions.

The second issue concerns the evolution of geo-

statistical methods that have been developed from

the Bayesian point of view (see Diggle et al., 2003).

In the traditional statistics literature, there are com-

monly heated disputes about whether the Bayesian

or frequentist approach is better. Both the successes

of Bayesian statistics and the advent of greater com-

puting power have led to an interest in Bayesian

geostatistical methods. The geoRAQ9 package for R in-

corporates basic Bayesian geostatistical tools (also,

seeDiggle andTawn, 1998).Whether such approaches

continue to be developed likely depends on the

availability of appropriate software, and currently,

such software is not widely available.

The third issue has to do with an evolving un-

derstanding about the results obtained with kriging,

which, of course, is a widely used spatial estimation

procedure. The usual kriging equations are obtained

by minimizing the estimation variance (with the

unbiasedness constraint); and, yet, it is now well

known that the resulting kriging variance is not ex-

actly a variance in the usual sense of the term. The

kriging variance does not directly depend on the

data and, hence, provides only a relative measure

of reliability. This has led to an interest in entropy,

best exemplified by the work of G. Christakos (e.g.,

Journel and Deutsch 1993; Christakos and Li, 1998;

Hristopulos and Christakos, 2001). Several defini-

tions of entropy exist, and one must be careful to

distinguish between the discrete and the continuous

case (see Cover and Thomas, 1991, especially chap-

ters 9 and 11). First, consider the discrete case. Sup-

pose there are outcomes E1,. . ., En with associated

probabilities p(E1),. . ., p(En). Then, the information-

theoretic entropy is given by

�
X

pðEiÞ ln pðEiÞ

This is also known as Shannon’s (1948) entropy but

is also found in Pauli (1933). It can be interpreted as

the average loss of ignorance or gain in knowledge.

For many applications, however, one must con-

sider continuous distributions. If f(x) is the density

function of a univariate continuous random variable,

then the entropy is defined as

Hð f Þ ¼ �
Z

f ðxÞ ln f ðxÞdx

This expression is different from the entropy for a

discrete random variable. The values of the density

function are not probabilities, and in particular, they

are not bounded by the interval [0,1]. Thus, the en-

tropy may not exist (i.e., the [improper] integral may

not converge to a finite value). Moreover, it need not

be positive.

To make this definition consistent with the pre-

vious one, it is necessary to introduce a reference

density g(x) and consider the following integral:

�
Z

f ðxÞ ln½ f ðxÞ=gðxÞ�dx

The justification for maximizing the entropy can be

made from various perspectives, but even then, the

solution is not unique. It is commonly noted or

claimed that the normal distribution has maximum

entropy. This is not quite complete; a question

about additional constraints must be addressed. If

the density function is only nonzero on an interval

[a,b], then the uniform distribution has maximum

entropy. If the density is only nonzero for [0,1) and

the expected value is fixed, then the exponential

distribution has maximum entropy. If the density

function is nonzero on (�1,1) with fixed expected

value and fixed variance, then the normal distribu-

tionhasmaximumentropy. The actualmaximal value

will depend on the variance. In Bayesian maximum
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entropy, it is the posterior distribution for which the

entropy is maximized.

Unfortunately, this higher level of mathematical

complexity and a lack of readily available software

have precluded a formal test of whether the entropy

results are really better than those obtained with the

usual forms of kriging. Additional investigation is

clearly needed, but such work may simply have to

wait until practice and operational implementation

catches up more with theory.

With regard to each of these issues (as well as

others), an impediment to further development and

expanded application seems to be the absence of

software, especially at the commercial or semicom-

mercial level. That such software is not yet readily

available likely reflects a lack of easily translatable

algorithms and a general immaturity of the scien-

tific principles. Although this situation is expected

to change, the extent to which such ideas will per-

meate geostatistical thinking in practice is yet to be

determined.

DESCRIPTIVE OR INFERENTIAL?

Traditional statistics operates at two levels: de-

scriptive and inferential. If the objective is to sum-

marize the measurements represented by a given

data set, then the task is a descriptive one (hence,

the term ‘‘descriptive statistics’’). However, if the

data are assumed to be a random sample from a

larger population and the objective is to use such

sample data to draw conclusions or make inferences

about the entire population, the task is one of in-

ference (hence, the term ‘‘inferential statistics’’). Both

geostatistics and stochastic modeling are somewhat

closer to descriptive statistics than to inferential

statistics. That is, drawing conclusions about the

specific data set and/or the specific source of the

data is more common than drawing conclusions

about the entire population in question. In particu-

lar, the geostatistical literature is almost void of

references to tests of hypotheses, which is a fun-

damental approach to traditional statistical infer-

ence, particularly from the frequentist viewpoint.

However, hypothesis testing could be a valuable

factor. For example, it might be desirable to test the

underlying assumptions of the modeling approach

(such as second-order or intrinsic stationarity) or

to evaluate the goodness of fit of the variogram and

covariance function. The book by Stein (1999) is

perhaps one of the few texts that devotes any space

to such ideas. Whitten (2003) raises a more general

question about the function of hypothesis testing

and questions why this has received less attention.

Pardo-Igúzquiza and Dowd (2004) provide one ex-

ample of applying hypothesis testing in the context

of geostatistics.

UNCERTAINTY AND RELIABILITY

Statistics, by its very nature, is intended to deal

with problems and data in a manner that acknowl-

edges conclusions will be couched in terms of un-

certainty (e.g., probabilities of types I and II errors

associated with hypothesis testing; confidence level

and margin of error associated with confidence in-

terval estimates of population parameters). When

kriging was first introduced and promoted as a

superior estimation technique (i.e., superior to the

nearest neighbor technique commonly in use at the

time), one of the claimed advantages was that the es-

timates have minimum variance (i.e., the kriging vari-

ance is minimum). As suggested above, it was sub-

sequently recognized that the kriging variance is

more a function of the data location pattern and the

variogram model than it is of the data themselves.

At best, it is a relative measure of reliability because

it can be artificially increased or decreased without

changing the estimated values. Moreover, as what

has been pointed out by several authors, the kriging

variance does not truly incorporate the uncertainty

associated with estimating and modeling the vario-

gram. This point is addressed, at least in part, by

Stein (1999) but under rather strong assumptions.

Consequently, the question might be asked as to

whether there are more adequate ways to quantify

the uncertainties associated with spatial estimation;

and if so, how can theybeused in a practical problem?

Although interest in quantifying the uncertainty

associated with variogram modeling goes back at

least to Davis and Borgman (1979, 1982), there have

been a series of more recent papers (e.g., Pardo-

Igúzquiza and Dowd, 2001; Ortiz and Deutsch, 2002;

Marchant and Lark, 2004 AQ10, AQ11). One important point is

commonly ignored: the sample variogram estimates

the values of the variogram but does not directly

estimate the variogram itself (i.e., the function). In

practice, then, one must choose a family of vario-

grams (e.g., Matérn, spherical, and power with one

or more parameters). Then, the sample variogram or
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the variogram cloud is used to estimate the parame-

ters. The problem is even more complicated in the

case of a nestedmodel variogram.Neithermaximum

likelihood nor weighted least squares do a good of

job of detecting the different components in a nested

model (or even the need for one). Although Matheron

(1973)AQ12 gives an integral representation for vario-

grams, it is more difficult to translate this into prac-

tical use. Several extant results also make use of a

multivariate normality assumption, and hence, they

are most applicable in the case of variograms linked

to covariance functions. Again, this is an area in

which more work is needed.

COLLABORATIVE EFFORTS IN RESEARCH
AND SOFTWARE DEVELOPMENT

A great deal has already been made of the im-

portance of software to the proliferation of geo-

statistical methodology and stochastic modeling

approaches. As already suggested, it appears that

future developments will be strongly intertwined

with the creation of software packages that imple-

ment the various ideas, algorithms, and approaches.

Such an effort requires substantial financial and

intellectual resources. The geostatistical community

has greatly benefited in this respect from collabora-

tion between industry and academia. One success-

ful approach, which became popular in the 1980s,

has been for the consortia of companies to provide

financial backing of academic research programs

in the form of a participation fee to obtain proprie-

tary access to research results and computational

code. At least four such collaborative efforts are

worth noting, each involving one or more academic

groups and one or more segments of the petroleum

industry.

At the top of this list is the Stanford Center for

Reservoir Forecasting (SCRF), which is well known

among, and well supported by, oil companies. Over

the years of its existence, SCRF has given birth to

many new ideas in geostatistics, producing numer-

ous research publications. Most of the actual details

of the algorithms, as well as specialized codes, are

reserved, of course, for the financial supporters and

participants.

The gOcadAQ13 project at the University of Nancy,

which is focused on 3-D Earth modeling, is another

such collaboration between industry and academia.

The consortium has resulted in the development

of the well-known gOcad software package, which

provides an alternative to traditional computer-

aided drawing of complex geological surfaces based

on discrete smooth interpolation. Although the ac-

tual software is reserved for supporters and group

members, the theory is well documented in the book

entitled Geomodeling (Mallet, 2002), and both pe-

troleum and environmental applications have been

reported.

A third example is Petbool, which is both a re-

search project and a software package originating

out of the collaboration between the Pontifical Catho-

lic University in Rio de Janeiro and Petrobras (see

Tavares et al., 2001). The acronym Petbool stands for

the combination of Petrobras and Boolean, and the

software provides 3-D visualization capabilities,

along with object-based geological modeling of oil

reservoirs.

Finally, the Statistical Analysis of Natural Re-

sources group at the Norwegian Computing Center

has developed multiple software packages largely

targeting the petroleum industry, which are sum-

marized and discussed in a recent article by Holden

et al. (2003).

The collaborative approach has been both good

and bad for the geostatistical community. Although

it has resulted in many new discoveries and de-

velopments that have greatly expanded the scien-

tific and computational boundaries of the discipline,

the proprietary nature of programs has somewhat

restricted their application. Individuals and groups

without the financial resources to participate are left

struggling to devise alternative computational ap-

proaches on their own, which has led to unneces-

sary tension between those who have access to the

best algorithms and code and those who do not, as

well as incomplete understanding of the solutions

to problems that can be obtained. Consequently, both

the industry and the scientific community might

now be better served by more open communica-

tion of geostatistical knowledge and greater acces-

sibility to software than what has been available in

the past. Such a suggestion, of course, requires a

different kind and level of cooperation and a great

deal of leadership and effort to make it work. More

immediately, a survey article providing a more de-

tailed summary and comparison of the different

analytical and modeling approaches, as well as the

software capabilities, would be very useful. The

practices common in the broader field of statis-

tics may be relevant here. STATLIB AQ14(http://lib.stat
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.cmu.edu/) is an archive of algorithms and program

codes. As noted previously, The American Statistician

has a regular section devoted to the review of sta-

tistical packages. In addition, a section of the Ameri-

can Statistical Association is devoted to statistical

software and graphics.

LANGUAGE DIFFICULTIES

As in the case of all scientific disciplines, there

have been many controversies within the geostatis-

tical community over the years. Interestingly, argu-

ment about the meaning and intent of some of the

fundamental terminology still exists. For example,

the term ‘‘variogram’’ was originally used to denote

the quantity

Var½Zðsþ hÞ � ZðsÞ� ¼ 2gðhÞ

under the assumption that it was finite for all values

of s and h and did not depend on s (see Matheron,

1971). However, under the second-order stationar-

ity assumption, it is easy to show that

0:5 Var½Zðsþ hÞ � ZðsÞ� ¼ Var½ZðsÞ�
� Cov½Zðsþ hÞ;ZðsÞ�

or

gðhÞ ¼ Cð0Þ � CðhÞ

where g(h) = 0.5Var[Z(s + h) � Z(s)] and C(h) =

Cov[Z(s + h), Z(s)]. Thus, it was natural to focusmore

on half of the variogram; hence, the term ‘‘semi-

variogram.’’ However, it soon became apparent that

there were few, if any, instances in geostatistics

where it was really necessary or even useful to con-

sider the (original) variogram instead of the semi-

variogram (as an example, the kriging equations

are easily derived and written in terms of the semi-

variogram). In the 1980s, many authors began using

the term variogram to denote the semivariogram,

omitting any reference to the original quantity. There

were two principal advantages of this shift: (1) it

simplified the language usage in all written and

oral communications (e.g., experimental variogram

seemed easier to say and communicate than ex-

perimental semivariogram); and (2) it avoided the

confusion created when the two terms were used

interchangeably or incorrectly, even when a dis-

tinction might have been technically correct.

Clearly, the shift in terminology was not and is

not universal, and there are those who insist on

using the original usage, which is certainly their

prerogative. It is difficult to say which term is more

common today; but, as an example, an examination

of the proceedings of the 1988 International Geo-

statistics Congress in Avignon, France, suggests that

most authors (or perhaps the editor) used vario-

gram exclusively, a few used semivariogram exclu-

sively, and a few others used the two terms inter-

changeably. A similar pattern can be observed in

many later texts and compilations. The documen-

tation for some software packages (e.g., GeoEas,

http://www.epa.gov/nerlesd1/databases/geo-eas

/access.htm) only uses variogram, and several au-

thors (e.g., Chiles and Delfiner, 1999) only acknowl-

edge semivariogram as an older, unused term. The

issue is not, and likely never will be, resolved.

Unfortunately, this is not the only inconsistency

in geostatistical terminology. At least two other

words (or terms) that appear with some frequency

in the literature do not always have precise mean-

ings. ‘‘Robust’’ (or robustness) is one example.

Kendall and Stuart (1979) AQ15wrote that ‘‘A statistical

procedure which is insensitive to departures from

the assumptions which underlie it is called robust.’’

This definition is originally attributed to Box (1953).

The problem is that the assumptions underlying a

particular procedure may not be clearly stated, or

their relevance may not be clearly understood; and

so, too commonly, the term robust is used as a gen-

eral catch-all adjective. In the context of geostatis-

tics, it is generally thought that the ordinary kriging

estimator is robust with respect to the values of

the variogram parameters. However, it may not be

so robust with respect to the underlying distribu-

tion of the random function or the intrinsic sta-

tionarity assumption; and so, as a broadly descrip-

tive term, robustness may not be an appropriate

characterization.

Another word that presents some interpretive

difficulties is ‘‘representativeness.’’ Sometimes, it

will be claimed that a sample is representative, and

occasionally, other quantities or statistics are called

representative. Unfortunately, it is commonly un-

clear in what sense the characteristic of represen-

tativeness applies. Intuitively, representative is a

word that sounds desirable, and consequently, it is

tempting to claim that some quantity or procedure
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is representative. It is easy, in fact, to think of ways

in which samples might be considered representa-

tive. For example, if the empirical distribution of the

sample is the same or nearly the same as the dis-

tribution of the population, then the sample might

be called representative. In this case, the sample

mean and variance might be expected to be close to

the population mean and variance, respectively. Un-

fortunately, none of these attributes can be known

in advance, and in fact, the population may not

have a finite mean or finite variance. Obviously,

random samples need not be representative at all.

Hence, to remove the ambiguity and to avoid con-

fusion, it would be extremely helpful in all com-

munications of this nature for geostatisticians and

their colleagues to explicitly state the sense in which

representativeness applies.

Although language differences might not be the

primary cause of divisions among practitioners,

they still represent a source of irritation and con-

fusion for those outside the immediate geostatis-

tical community, and they do not serve to place the

field in the best scientific light. To ensure the future

of the discipline, geostatisticians would do well to

engage in a conversation aimed at standardizing

language and terminology and in making geosta-

tistical communications more effective, more under-

standable, and more accessible to a wider range of

potential users.

FINAL THOUGHTS

It seems obvious that geostatistics and stochastic

modeling are alive and well, and that they will

continue to be adapted and exploited for the fore-

seeable future. As suggested earlier, neither disci-

pline has evolved by altogether conventional means

through largely theoretical academic endeavors, but

instead, through extensive experience, practice, and

applied problem solving in the context of a rich and

diverse array of applications. It is this focus on

applications that makes the tools of these disciplines

so attractive in many areas of investigation.

In 50 or even 20 yr, geostatistics and stochastic

modeling will no doubt look different. They may

continue to converge, or they may diverge along

entirely new or different paths. However, if history

is a strong indicator of the future, it seems certain

they will further evolve within an applications and

problem-solving framework. There will be theo-

retical enhancements, to be sure, and perhaps some

truly astonishing breakthroughs; but the need to

address both simple and thorny questions from an

applied point of view is likely to remain the primary

driver.

In a very real sense, the world is becoming

smaller with the relentless advances of technology.

As a result, science, business, industry, medicine,

politics, and the like are becoming increasingly fo-

cused on spatial relationships. It is the spatial do-

main in which stochastic modeling and geostatistics

found their beginnings, and it is within this same

spatial domain that they will surely continue to

flourish.

Obviously, the future is unknown; but stochastic

modeling and geostatistics seem destined to exert

even greater influence on the way people think

about the world around them. Although their past

contributions will persist, there will likely be many

new applications and developments that will have

profound influence on global thinking and well-

being. This book catalogs some of the many exam-

ples illustrating progress and enhancements over

the last 10 yr, specifically in the rich areas of earth

and petroleum science that have been traditional

strongholds for geostatistics and stochastic model-

ing since their early beginnings. The next decade

and beyond promises to be an equally productive

and exciting time in which geostatistics and sto-

chastic modeling impact not only the geosciences

but important areas of investigation far beyond this

traditional base.
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